
1. Introduction
Trapped bubbles are ubiquitous in natural subsurface porous strata. Since they block a portion of the void space 
and contribute significant fluid–fluid interfacial area, they can have a sizable impact on the hydraulic conductiv-
ity (Anton & Hilfer, 1999; Bear, 1996), mass and heat transfer coefficients (Ehlers & Häberle, 2016; Ozgumus & 
Mobedi, 2015), and chemical reaction rate (Lay et al., 1996; Yortsos & Stubos, 2001) in a porous medium. As a 
result, the distribution and morphology of a population of bubbles are of significant interest in oil and gas recov-
ery (Gao et al., 2021; Geistlinger et al., 2015; A. Mehmani et al., 2019) and geologic CO2 storage (Fu et al., 2013; 
Huppert & Neufeld, 2014; Joewondo et al., 2021; Juanes et al., 2006; Li et al., 2020; Lyu et al., 2021).

After bubbles emerge after direct gas injection, heating, depressurization, or chemical reactions (Danov 
et al., 2003; Holocher et al., 2003; Lay et al., 1996; Yortsos & Stubos, 2001), they are not immediately at equilib-
rium, and would spontaneously evolve via ripening to reduce total free energy. Ripening is the process by which 
bubbles with a high capillary pressure (Pc) dissolve into the wetting phase and transfer their mass, by molecu-
lar diffusion, to bubbles with a low Pc. No external forcing is required. An initial distribution of bubbles with 
different sizes will therefore evolve toward a new distribution that has minimum interfacial free energy (Wang 
et al., 2021). For example, when bubbles are spherical, capillary pressure follows 𝐴𝐴 𝐴𝐴𝑐𝑐 = 2𝜎𝜎∕𝑅𝑅 , where 𝐴𝐴 𝐴𝐴 is the 
surface tension and 𝐴𝐴 𝐴𝐴 is the radius of the bubble. This means smaller bubbles have a larger capillary pressure. As 
a result, the ripening of spherical bubbles leads to coarsening, a process where small bubbles dissolve and feed 
into large bubbles. In bulk fluids (Figure 1a), coarsening is unabated and continues until all bubbles merge into 
one. For an infinitely sparse bubble population, the ripening kinetics are predicted by the Lifshitz-Slyozov-Wagner 
(LSW) theory (Lifshitz & Slyozov, 1961; Voorhees, 1985; Wagner, 1961), which states that the average bubble 
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radius (rc) scales with time (t) as 𝐴𝐴 𝐴𝐴
3
𝑐𝑐 ∼ 𝑡𝑡 . Note that the classical LSW theory only deals with ripening in three 

dimensions. In two dimensions, nevertheless, similar scaling is also derived (Bray, 2002; Rogers & Desai, 1989; 
Yao et al., 1993). Moreover, each bubble transfers mass with the surrounding mean field (Bray, 2002; Lifshitz & 
Slyozov, 1961; Yao et al., 1993) as follows:

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐶𝐶LSW𝑅𝑅𝑅𝑅

(

1

𝑅𝑅𝑐𝑐

−
1

𝑅𝑅

)

, (1)

where 𝐴𝐴 𝐴𝐴LSW = 8𝜋𝜋𝜋𝜋𝜋𝜋∞𝐷𝐷∕𝑘𝑘𝐵𝐵𝑇𝑇  is a constant that contains the atomic volume ν of the solute, the concentration 
of the saturated solution 𝐴𝐴 𝐴𝐴∞ , the diffusivity of the solute in the solution D, the Boltzmann constant kB, and the 
temperature T. Equation (1) implies that the driving force is 𝐴𝐴 𝐴𝐴(1∕𝑅𝑅𝑐𝑐 − 1∕𝑅𝑅) and the characteristic mass transfer 
length is 𝐴𝐴 𝐴𝐴 . Note that for a dissolving bubble, the driving force increases while simultaneously the characteristic 
length decreases.

In a porous medium, however, the bubble size and the mass transfer length are decoupled. Figures 1b and 1c 
shows the void space can be divided into chambers, or pores, connected by converging-diverging segments, or 
throats. Collectively, these define a graph of admissible diffusion pathways for the dissolved solute. The concen-
tration of the solute in each pore is approximately uniform, because of the larger mass transfer resistance imposed 
by the surrounding throats (Y. Mehmani et al., 2014). The characteristic length associated with mass transport 
is therefore dictated by the lattice spacing, L0. Due to the decoupling of bubble size from mass transfer length, 
LSW theory and Equation (1) become invalid for porous-media applications. Simple remedies of correcting the 
diffusion coefficient, as done by earlier works (Schmelzer et al., 1995; Slezov et al., 1993), fall inadequate. A new 
theory is required to capture the physics of bubble coarsening in porous media.

In this letter, we aim at (a) numerically demonstrating and rationalizing the failure of LSW theory for bubble 
coarsening in porous media; (b) theoretically deriving kinetic laws for bubbles coarsening in porous media; and 
(c) analyzing the time scale for the coarsening in porous media and discussing its implications in geophysical 
applications.

2. Numerical Simulation in Homogenous Porous Media
We first demonstrate the failure of LSW in porous media by numerical simulations using a recently developed 
pore-network model (PNM) that has already been validated experimentally (Y. Mehmani & Xu, 2022a, 2022b).

In the PNM, the complex void geometry of a porous medium is replaced by an interconnected network of pores 
and throats. The PNM is quasi-static, fully implicit, and employs adaptive time stepping. The PNM can model 
mass transport by diffusion following Fick’s law, while no convection is included. The PNM is sufficient to 
model the ripening process in this paper. The quasi-static hypothesis is rationalized in Supporting Information. 
The PNM has been validated against published micromodel experiments (K. Xu et al., 2017). The PNM is not 
limited to the geometrical structure.

We simulate the ripening of 40,000 bubbles inside a 200 × 200 lattice pore network. Each pore is connected to 
four neighboring pores through the throats. The pores are cubic in shape for simplicity. The lattice spacing L0 is 
10 μm, which is equal to the sum of the throat length, Lt (8 μm), and the pore-body length, 2Lp (2 μm). Each pore 
initially contains one bubble as multiple small bubbles in the same pore will quickly fuse into one (rationalized 
in Supporting Information S1), and the average bubble volume 𝐴𝐴 𝑉𝑉 0 is 3.78 × 10 −1 μm 3, which is set to be smaller 
than the volume of the largest inscribed sphere in the pore, Vins, which is 4.18 μm 3. The latter corresponds to the 
minimum curvature a bubble can assume in a pore. Detailed parameters of the simulation are chosen to be typical 
of geologic CO2 sequestration operations and are listed in the Supporting Information S1.

Figure 2a shows the evolution of every bubble’s volume in this demonstration, where we can identify two ripen-
ing stages:

•  Coarsening stage. It happens at early time. In the coarsening stage, small bubbles dissolve and absorb into 
large bubbles. The ripening direction is the same as classical LSW ripening in bulk fluid, as the bubbles are 
still spherical and larger bubbles are of lower pressure. However, Figure 2b shows that the rc 3 − t scaling from 
LSW theory fails in this stage, and a much slower scaling of coarsening is observed. Because the driving 
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force of ripening is the same as that in LSW theory, the deviation from LSW theory must be a result of mass 
transfer kinetics.

•  Anti-coarsening stage. It happens at late times when coarsening stops so bubbles cease to disappear. In this 
stage, the ripening direction reverses until they attain identical capillary pressure. The transition from coarsen-
ing to anti-coarsening is attributed to the non-monotonicity in the Pc – Vb relation of bubbles. Anti-coarsening 
kinetics have been well-studied recently (de Chalendar et al., 2018; K. Xu et al., 2017).

It is worth noting that, almost all changes associated with interfacial free energy and spatial redistribution of 
bubbles occur during the coarsening stage, as shown in Figure 2c. By contrast, changes during the anti-coarsening 
stage are negligible, although it takes much longer time and gets much attention in recent years (de Chalendar 
et al., 2018; Xu et al., 2017). It is therefore reasonable to approximate the equilibrium state of a bubble population 
as that immediately preceding the anti-coarsening stage. In other words, it is the kinetics of the coarsening stage 
that determines the equilibrium configuration of bubbles in a porous medium—but classical LSW theory cannot 
predict this coarsening process.

3. Theory of Coarsening Kinetics in Porous Media
3.1. Assumptions

Here, we focus on a homogenous porous medium for simplicity and comparison with the above numerical mode-
ling. All pores are of identical size, shape, and connectivity to neighbors. We assume bubbles are perfectly 
non-wetting. The initial condition is assumed to consist of bubbles immediately after nucleation, which implies 
there are no bubbles that span multiple pores. All bubbles thus share identical Pc−Vb relation. In addition, we 

Figure 1. (a) Direct numerical simulation result of concentration field during bubble ripening in a bulk fluid in the absence of convection; copyright obtained from 
(Sun & Beckermann, 2010); (b) Schematic of bubbles in a porous medium, with geometric parameters annotated. Note that bubbles are confined in pore bodies, while 
they can exchange mass with neighboring pores through throats; (c) Concentration field during four bubble ripening in porous media using a phase-field method 
(Shimizu & Tanaka, 2017). Note that the concentration along the throat is approximately linear as shown in the inserted concentration profile along the throat, while 
concentration inside the pore body is relatively uniform.

Figure 2. Ripening kinetics of 40,000 bubbles over time in the demonstrative case. Bubbles are trapped inside a 200 × 200 lattice pore network. (a) The evolution of 
every bubble’s volume over time. (b) Comparison between simulation results of 𝐴𝐴 𝐴𝐴

3
𝑐𝑐 evolution and the 𝐴𝐴 𝐴𝐴

3
𝑐𝑐 ∼ 𝑡𝑡 scaling from LSW theory. Note the evolution of 𝐴𝐴 𝐴𝐴

3
𝑐𝑐 overtime 

is sublinear, that is, is slower than LSW theory. (c) Evolution of the fraction of bubble count over time. Overlaid is the total interfacial surface area (proportional to 
surface free energy) over time. For all three plots, dramatic change of mode emerges at te as represented by the vertical dashed lines.
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assume that throat width is much narrower than the pore body so the major mass transfer resistance is along 
throats; otherwise, if the grain is small enough compared to the throat (which is not realistic in subsurface envi-
ronment), the kinetics will be regressed to LSW theory. We assume the conservation of gas saturation, S, the ratio 
of total bubble volume over total void space volume. This assumption is valid when Pc is much smaller than the 
ambient pressure that holds for most subsurface scenarios (Bauget & Lenormand, 2010). We leave the impacts of 
heterogeneity, wettability, and multi-pore spanning bubbles to future work.

3.2. Single Bubble Evolution

Before resolving the collective evolution of the bubble population during the coarsening stage, we first revisit the 
evolution kinetics of a single bubble in a porous medium. For a single bubble exchanging mass with its surround-
ing fluid, two length scales are relevant:

•  The length scale associated with the mass transfer between the bubble and a “mean field” or infinitely far 
environment, 𝐴𝐴 𝐴𝐴𝑐𝑐_env . In a bulk fluid, this is proportional to the bubble radius, but in a porous medium, it is 
proportional to the pore size (i.e., 𝐴𝐴 𝐴𝐴𝑐𝑐_env ∝ 𝐴𝐴0 ) as pore-throat structure “quantizes” the space, as we discussed 
in introduction.

•  The length scale associated with the mass transfer between the bubble and its neighboring bubbles, 𝐴𝐴 𝐴𝐴𝑐𝑐_int . 
This depends on the average bubble-to-bubble distance, which can be expressed at fixed total bubble volume 
as 𝐴𝐴 𝐴𝐴𝑐𝑐_int ∝ 𝑅𝑅

3∕𝑑𝑑
𝑐𝑐  where Rc is the characteristic radius of the bubble population and d is the problem dimension 

(two for 2D pore-network, and three for 3D pore-network).

The evolution kinetics of a single bubble is determined by the characteristic mass transfer distance Lc = min[𝐴𝐴 𝐴𝐴𝑐𝑐_env ; 
𝐴𝐴 𝐴𝐴𝑐𝑐_int ]. That is, when bubbles are densely packed, bubble-bubble interactions dominate, but when bubbles are 

sparsely packed, they can be approximated as exchanging mass with an infinite mean field. In both cases, the 
evolution of the bubble’s volume is described by:

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
= −

𝐶𝐶
∗

𝐿𝐿𝑐𝑐

(

1

𝑅𝑅𝑐𝑐

−
1

𝑅𝑅

)

 (2)

where C* is a constant that incorporates the effects of solubility, surface tension, Henry’s constant, and pore 
geometry. Explicit formulas for both Lc and C* are derived in the Supporting Information S1.

3.3. Bubble Population Evolution

Substituting Equation  (2) into the total bubble volume conservation, 𝐴𝐴
∑

𝑖𝑖

𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑖𝑖

𝑑𝑑𝑑𝑑
= 0𝑏 yields 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝑁𝑁∕

∑

𝑖𝑖
(1∕𝐴𝐴𝑖𝑖) . 

Notice that Rc is the harmonic mean of bubble radii, not equal to rc from LSW theory which is the arithmetic 
mean (Bray, 2002).

The next step is to write down a probability distribution function for the bubble radii, 𝐴𝐴 𝐴𝐴(𝑅𝑅𝑅 𝑅𝑅) , defined as the 
derivative of the number density of bubbles with respect to R. We expect a self-similar expression for n(R,t), 
similar to the classical LSW theory (Bray, 2002). We thus decompose 𝐴𝐴 𝐴𝐴(𝑅𝑅𝑅 𝑅𝑅) into a time-dependent term and a 
time-independent term as 𝐴𝐴 𝐴𝐴(𝑅𝑅𝑅 𝑅𝑅) = 𝑓𝑓 (𝑥𝑥) ⋅ 𝑅𝑅−4

𝑐𝑐 (𝑅𝑅) , where 𝐴𝐴 𝐴𝐴 = 𝑅𝑅∕𝑅𝑅𝑐𝑐 and f(x) is the probability density function of 
x. We substitute this into the continuity equation for n(R, t):

𝜕𝜕𝜕𝜕(𝑅𝑅𝑅 𝑅𝑅)

𝜕𝜕𝑅𝑅
+

𝜕𝜕

𝜕𝜕𝑅𝑅
(𝜕𝜕(𝑅𝑅𝑅 𝑅𝑅)𝑣𝑣(𝑅𝑅)) = 0 (3)

to obtain:

���̇��3
�
(

�� ′ + 4� ′) = � ⋅
[

� ′(�−2 − �−3) + �
(

−2�−3 + 3�−4)] (4)

where 𝐴𝐴 𝐴𝐴(𝑅𝑅) =
𝑑𝑑𝑅𝑅

𝑑𝑑𝑑𝑑
=

𝐶𝐶

𝐿𝐿𝑐𝑐𝑅𝑅
2
𝑐𝑐

⋅

(

1

𝑅𝑅𝑐𝑐𝑅𝑅
2
−

1

𝑅𝑅3

)

 according to Equation (2).

Note that f(x) is not a function of time. Given that Rc and f(x) are independent, we can write 𝐴𝐴 𝐴𝐴𝑐𝑐�̇�𝑅𝑐𝑐𝑅𝑅
3
𝑐𝑐 = 𝐶𝐶1𝐶𝐶 where 

C1 = 27/256. After imposing the constraint that 𝐴𝐴 ∫
∞

0
𝑓𝑓 (𝑥𝑥) = 1 , we arrive at the relative bubble-size distribution:
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𝑓𝑓 (𝑥𝑥) = 9190𝑥𝑥3(4 − 3𝑥𝑥)
−
19

6
(

3𝑥𝑥2 + 8𝑥𝑥 + 16
)−

23

12 exp

[

2

3𝑥𝑥 − 4
−

√

2

12
tan−1

(

3𝑥𝑥 + 4

4
√

2

)]

 (5)

Surprisingly, 𝐴𝐴 𝐴𝐴 (𝑥𝑥) does not depend on either Lc or d. The evolution kinetics for Rc can now be derived by substi-
tuting Equation (5) into Equation (4), provided an expression for Lc is available. For a densely packed bubble 
population, 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑐𝑐_int ∝ 𝑅𝑅

3∕𝑑𝑑
𝑐𝑐  , and so 𝐴𝐴 𝐴𝐴𝑐𝑐�̇�𝑅𝑐𝑐𝑅𝑅

3
𝑐𝑐 = 𝐶𝐶1𝐶𝐶 and Rc 4+3/d ∼ t. For a sparsely packed bubble population, 

𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑐𝑐_env ∝ 𝐴𝐴0 , and so 𝐴𝐴 𝐴𝐴𝑐𝑐�̇�𝑅𝑐𝑐𝑅𝑅
3
𝑐𝑐 = 𝐶𝐶1𝐶𝐶 and Rc 4 ∼ t. Exact expressions for these two scenarios can be derived 

respectively:

𝑅𝑅

3

𝑑𝑑
+4

𝑐𝑐 (𝑡𝑡) −𝑅𝑅

3

𝑑𝑑
+4

𝑐𝑐 (0) =
27𝐷𝐷𝑚𝑚𝑥𝑥0𝜎𝜎𝜎𝜎𝑡𝑡𝑉𝑉mb

512𝜋𝜋𝜋𝜋𝑝𝑝𝑥𝑥𝐿𝐿𝑡𝑡𝑉𝑉mw

(

3

𝑑𝑑
+ 4

)

(

3𝑉𝑉 0

4𝑎𝑎𝜋𝜋

)

1

𝑑𝑑

𝑡𝑡 (6)

for densely packed bubbles, and

𝑅𝑅
4
𝑐𝑐 (𝑡𝑡) −𝑅𝑅

4
𝑐𝑐 (0) =

27𝐷𝐷𝑚𝑚𝑥𝑥0𝜎𝜎𝜎𝜎𝑡𝑡𝑀𝑀𝑏𝑏𝑉𝑉mw

64𝜋𝜋𝜋𝜋𝑝𝑝𝑥𝑥𝐿𝐿𝑝𝑝𝑀𝑀𝑤𝑤𝑉𝑉mb

𝑡𝑡 (7)

for sparsely packed bubbles. Here, Dm is the Fickian diffusion coefficient, Kpx Henry's constant, At the 
cross-sectional area of each throat, x0 is the saturated mole fraction of the bubble component dissolved in the 
surrounding liquid phase, 𝐴𝐴 𝐴𝐴mb the molar volume of the non-wetting phase, 𝐴𝐴 𝐴𝐴mw the molar volume of the wetting 
phase, 𝐴𝐴 𝐴𝐴𝑏𝑏 is the molecular weight of the non-wetting phase, and 𝐴𝐴 𝐴𝐴𝑤𝑤 the molecular weight of the wetting phase. 
The details of the above derivation are given in Supporting Information S1.

We next validate the above derivation using PNM simulations (Y. Mehmani & Xu, 2022a, 2022b). If we set the 
initial mean bubble volume to 𝐴𝐴 𝑉𝑉 0 ≪ 𝑉𝑉ins , the spatial distribution of bubbles would become more and more sparse 

as they coarsen. We would therefore expect Rc 4 ∼ t. But if 𝐴𝐴 𝑉𝑉 0 is relatively large (but the bubble is still spherical), 
bubbles transfer mass primarily with neighboring bubbles, and an Rc 4+3/d ∼ t scaling is expected. We note that in 
our simulations, the pore-network is 2D so d = 2, so 4 + 3/d = 5.5. Figure 3a shows that our theoretical predic-
tion is in excellent agreement with PNM simulations. Figure 3b compares simulated bubble-size distributions at 
different times with different initial distributions, against the analytical solution in Equation (5). Here too, the 
agreement is very good regardless of the initial distribution and 𝐴𝐴 𝑉𝑉 0 . Note the predictions are also very different 
from that of LSW theory.

Figure 3. Comparison between theory and numerical simulations. (a) The evolution of the bubbles’ harmonic mean radius with time, for three different cases: 
bubbles in a 200 × 200 matrix with gas saturation S = 5 × 10 −4 (yellow circles); bubbles in a 200 × 200 matrix with gas saturation S = 5 × 10 −2 (red circles); bubbles 
in a 30 × 30 matrix with gas saturation S = 5 × 10 −2 (blue circles). Note that the scaling matches well with the theoretical prediction, independent of model size. 
(b) Comparison between the analytical solution of f(x) and numerical simulation results at time 0, 0.1 te, 0.3 te. Note that f(x) is independent of initial bubble size 
distributions (drawn), Equation (5) well matches the simulation, and LSW theory fails.
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4. Equilibrium Time and Its Practical Implication
We note that the coarsening toward quasi-equilibrium in porous media is local, as both Equations (6) and (7) 
contain no variable correlated to the problem size. This claim is supported by the simulation results that Rc 
evolution in a 200 × 200 lattice pore network overlaps with that in a 30 × 30 lattice pore network (Figure 3a). It 
is distinct from the anti-coarsening stage in porous media that kinetics is strongly correlated to the scale of the 
system (Li et al., 2021). As a result, the time for the system to reach thermodynamic quasi-equilibrium (transition 
from coarsening to anti-coarsening), te, is local and determined only by pore-scale geometry and fluid properties.

We therefore define te the moment of ��(��)  =  𝐴𝐴 𝐴𝐴ins , which is the radius of a spherical bubble with volume Vins, into 
Equations (6) and (7). For both densely and sparsely distributed bubbles, it can be estimated that:

𝑡𝑡𝑒𝑒 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑡𝑡𝑑𝑑 (8)

where F is a scale-free coefficient that only depends on fluids' properties and the pore-throat shape (not size), G 

is a function of dimension and gas saturation S. Easy to derive that 𝐴𝐴 𝐴𝐴 =

(

𝑅𝑅
2

ins

𝐴𝐴𝑡𝑡

)

(

𝑅𝑅
ins

𝐿𝐿𝑡𝑡

)(

𝑉𝑉
mw

𝑉𝑉
mb

)

 for both limits, while 

𝐴𝐴 𝐴𝐴 =
512𝜋𝜋

(

108+
81
𝑑𝑑

)

𝑥𝑥0

(

𝑉𝑉pore

𝑉𝑉ins

)

1

𝑑𝑑
𝑆𝑆

−
1

𝑑𝑑 for densely distributed bubbles and G = 𝐴𝐴
64𝜋𝜋

27

(

𝐿𝐿𝑝𝑝

𝐿𝐿𝑡𝑡

)(

𝑀𝑀𝑤𝑤

𝑀𝑀𝑏𝑏

)(

𝑉𝑉
mb

𝑉𝑉
mw

)

2

 for sparsely distrib-

uted bubbles. 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝑅𝑅ins𝐾𝐾px∕𝜎𝜎 ∝ 𝐿𝐿0 is minimum extra solubility due to capillary pressure, 𝐴𝐴 𝐴𝐴𝑑𝑑 = 𝐿𝐿
2
𝐴𝐴
∕𝐷𝐷𝑚𝑚 ∝ 𝐿𝐿

2
0
 is 

characteristic diffusion time between two neighboring pores.

According to the above analytical derivation or equilibrium time, we can infer that, (a) with a fixed porous shape 
and fluid system (fixed F and G), 𝐴𝐴 𝐴𝐴𝑒𝑒 ∝ 𝐿𝐿

3
0
 ; and (b) with fixed F, Ds, and td, te is independent of S at the sparse limit 

and is negatively correlated to S as 𝐴𝐴 𝐴𝐴𝑒𝑒 ∝ 𝑆𝑆
−1∕𝑑𝑑 at the dense limit. We then conduct numerical simulations with 

different 𝐴𝐴 𝐴𝐴0 (from 0.1 μm to 10 mm) and gas saturation S (from 0.0002 to 0.2) to validate the above analytical 
expression and discussion of equilibrium time. As shown in Figures 4a and 4b, the numerically measured te well 
matches our theoretical estimation for both dense and sparse cases.

5. Implications
5.1. Critical Saturation

The critical saturation, Scrit, for bubble population to transient from “dense” to “sparse” can be estimated by 
equating te in two scenarios. It yields:

Figure 4. (a) The numerical time required for bubble populations to reach thermodynamic stability when changing the pore-network lattice L0 from 1 μm to 10 mm 
and changing the gas saturation S from 0.0002 to 0.2. (b) The numerical time required for bubble populations to reach thermodynamic stability when changing the gas 
saturation S from 0.0002 to 0.2 with Lp = 100 μm and Lp = 50 μm (see Supporting Information S1 for data of more Lp values).
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𝑆𝑆crit =

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

27

108 +
81

𝑑𝑑

⎞

⎟

⎟

⎟

⎠

(

𝐿𝐿𝑡𝑡

𝐿𝐿𝑝𝑝

)

(

𝑉𝑉
2

𝑚𝑚𝑚𝑚𝑀𝑀𝑏𝑏

𝑉𝑉
2

𝑚𝑚𝑏𝑏
𝑀𝑀𝑚𝑚

)⎤

⎥

⎥

⎥

⎦

𝑑𝑑

(

𝑉𝑉pore

𝑉𝑉ins

)

. (9)

We note that this critical S is not relevant to exact pore size, but a function of dimension, pore shape, and fluid 
properties. In our demonstrative case, Scrit = 0.008, which is well supported by numerical simulation as shown in 
Figure 4b. For subsurface CO2-water system in a 3-D pore network, it is easy to conclude that bubbles in porous 
media should always be “dense” when gas saturation is of practical significance.

5.2. Equilibrium Time

The value of te is highly sensitive to pore size as 𝐴𝐴 𝐴𝐴𝑒𝑒 ∝ 𝐿𝐿
3
0
 , which could fall in a very wide interval for different natu-

ral porous media, as presented in Figures 4a and 4b. For the demonstrative fluid system, te could be as short as 
milli-seconds when L0 = 1 μm (common for fine sandstone and shale (Zou et al., 2015)), and as long as 30 years 
when L0 = 1 mm (not rare in coarse limestone).

Comparison between te against the characteristic time of any other concerned physical process (Cugliandolo, 2010; 
Ngamsaad et al., 2010) determines whether the local thermodynamic equilibrium presumption is valid. When te 
is comparably short, bubbles can be considered as equilibria immediately when they are nucleated, which ration-
alizes recent experimental observation (Berg et  al., 2020) that only non-spherical large bubbles are observed 
quickly after bubble nucleation in a rock sample. In contrast, if te is comparably large, the thermodynamic equi-
librium of bubbles may be invalid.

5.3. Limitations

As a preliminary effort to theoretically identify the coarsening kinetics of bubbles in porous media, this work 
adopts highly ideal assumptions, such as uniform pore size and shape, completely non-wetting bubbles, and 
the absence of external field. These simplifications allow simple analytical solutions. Nevertheless, in further 
practical investigations relevant to bubble evolution in subsurface porous media, these simplifications should be 
removed. Specifically, theories for the ripening of large bubbles spanning multiple pores should be constructed in 
the future, based on some preliminary numerical results (Singh et al., 2022; Y. Mehmani & Xu, 2022a).

In addition, we believe future experimental work, including microfluidic experiments and X-ray tomography and 
image analysis (Berg et al., 2020; Bultreys et al., 2020; Spurin et al., 2020), would be very helpful in validating 
our theory and extending it in identifying bubble’s spatial distribution, especially in heterogeneous media.

6. Conclusion
We numerically demonstrate that bubbles in porous media coarsen toward thermodynamic equilibrium, but the 

𝐴𝐴 𝐴𝐴
3
𝑐𝑐 ∼ 𝑡𝑡 scaling from classical LSW theory fails to describe its kinetics. The failure of LSW theory in porous media 

is that the porous structure decouples the bubble size and its mass transfer length scale. This separation of scales 
results in two much slower coarsening kinetics, 𝐴𝐴 𝐴𝐴

3∕𝑑𝑑+4
𝑐𝑐 ∼ 𝑡𝑡 and Rc 4 ∼ t, for densely and sparsely distributed bubble 

populations, respectively, with the former practically more important in subsurface environment. Theoretical 
solution for bubble coarsening and bubble size distribution perfectly matches the PNM simulations.

We define bubbles’ thermodynamic equilibrium time, te, as the end of coarsening stage, during which majority of 
energy dissipation completes. After te, the system’s pore occupancy and interfacial area are determined, which are 
crucial parameters in characterizing and predicting multiphase flow and transport in porous media (Armstrong 
et al., 2018). In addition, the magnitude of te may be as small as sub-seconds and as large as thousands of years 
in different typical subsurface porous media, so it is necessary to compare the kinetics of ripening against other 
processes of interest to examine the local capillary equilibrium assumption, in applications such as geologic CO2 
sequestration, oil and gas recovery, and groundwater systems.
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More generally, this work reveals that mass transfer is fundamentally altered in porous media, by decoupling 
the mass transfer coefficient from details inside the pore body. Following recent findings that porous struc-
ture deforms the interface and thus modifies mass transfer driving force (Blunt, 2022; Ke Xu et al., 2019; K. 
Xu et al., 2017; Wang et al., 2021), we are now one step further toward finally understanding the evolution of 
multi-phase fluid systems in subsurface porous media.

Data Availability Statement
Parameters and derivations applied in this work are shown in Supporting Information S1. Information of numer-
ical simulation is demonstrated in detail in our earlier publication (Y. Mehmani et al., 2014). Data presented in 
figures are publicly available through zenodo.org (https://doi.org/10.5281/zenodo.6967314).
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