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In geologic, biologic, and engineering porous media, bubbles (or
droplets, ganglia) emerge in the aftermath of flow, phase change,
or chemical reactions, where capillary equilibrium of bubbles signif-
icantly impacts the hydraulic, transport, and reactive processes.
There has previously been great progress in general understanding
of capillarity in porous media, but specific investigation into bubbles
is lacking. Here, we propose a conceptual model of a bubble’s cap-
illary equilibrium associated with free energy inside a porous me-
dium. We quantify the multistability and hysteretic behaviors of a
bubble induced by multiple state variables and study the impacts of
pore geometry and wettability. Surprisingly, our model provides a
compact explanation of counterintuitive observations that bubble
populations within porous media can be thermodynamically stable
despite their large specific area by analyzing the relationship be-
tween free energy and bubble volume. This work provides a per-
spective for understanding dispersed fluids in porous media that is
relevant to CO2 sequestration, petroleum recovery, and fuel cells,
among other applications.
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Bubbles are generated, trapped, and mobilized within porous
media as a consequence of incomplete fluid–fluid displace-

ments (1, 2), phase changes (3, 4), chemical and biochemical
reactions (5, 6), or injection of emulsified fluids and foams (7, 8).
Compared to continuously connected phases, the behavior of
dispersed bubbles, or ganglia, are far less understood. In par-
ticular, the thermodynamic stability of bubbles, despite their large
specific surface area, remains a puzzle. The difficulty comes from
the fact that each bubble can attain a volume (V), topology, and
capillary pressure (Pc) that is distinct from other bubbles in the
medium (9). The variability poses challenges to understanding the
transport and trapping mechanisms of bubbles in geologic CO2
sequestration (10, 11), hydrocarbon recovery (12, 13), fuel cell
water management (14, 15), and vadose zone oxygen supply
(16, 17).
The dominant factor controlling a bubble’s behavior in a po-

rous medium is capillarity, which is typically much larger than
either viscous, gravitational, or inertial forces (18, 19). Capillary
pressure, Pc, allows a closure relationship for two-phase Darcy
Eqs. (20–22) and influences thermodynamic properties like phase
partition (23). Capillary pressure is derived from the Young–
Laplace equation Pc = γκ, where γ is the interfacial tension and κ
is the surface curvature. In an open space without obstacles, a
bubble spontaneously evolves into a sphere to minimize its total
interfacial energy. Thus, Pc is a continuous and monotonically
decreasing function of V (Fig. 1A). However, in a porous medium,
bubble’s Pc–V relation is more complicated due to the geometric
confinement imposed by the porous structure and topological
evolution (24). A bubble can no longer remain spherical as it
grows in size but must conform to the geometry of the pore(s) it
occupies. Therefore, a bubble’s Pc is a function of not only its
volume and interfacial tension but also its topology as dictated by
the confining porous medium, as confirmed by recent laboratory
experiments and numerical simulations (25–29). The mere pres-
ence of confinement therefore engenders a host of phenomena
that would otherwise be absent, such as capillary trapping (30, 31),
anticoarsening of bubble populations (32, 33), and complex

ganglion dynamics (11, 18). Furthermore, theoretical studies in
mathematical topology (28, 34, 35) prove that immiscible fluids
can be fully characterized by d+1 Minkowski functionals, where
d is the problem dimension. Such characterizations remove the
path-dependent (or hysteretic) behavior common to these systems
(34, 35).
Recent developments in microfluidics and micro computed

tomography imaging allow detailed pore-scale visualizations of
fluids inside porous media, including the morphology of bubbles
and ganglia (25, 36–39). Garing et al. (25) experimentally mea-
sured the equilibrium capillary pressure of trapped air bubbles
inside sandstone and bead-pack samples. They found that, unlike
bubbles within a bulk fluid, the Pc of trapped bubbles shows no
clear dependence on V and seems to fall within a bounded in-
terval, except for vanishingly small V. Xu et al. (40) proposed an
empirical correlation for the Pc trapped bubbles based on
microfluidic observations. In this correlation, as V increases, Pc
decreases until a minimum is reached and then increases line-
arly. In the first stage, the bubble is unconfined, whereas in the
second, it is reshaped by the surrounding solid walls. The pro-
posed correlation, however, is only valid for bubbles in a single
pore and not bubbles that span multiple pores. The latter seems
to be rather common in nature as evidenced by recent direct
observations (Fig. 1B) (2, 25).
Here, we propose a simple conceptual model to describe the

equilibrium states of a bubble with arbitrary size trapped inside a
porous medium. The model accounts for the bubble’s morphol-
ogy, the geometry of the solid matrix, and the wettability between
the two. We derive all metastable configurations of the bubble
analytically and highlight the thermodynamic states the bubble
assumes when it is static, growing, or shrinking. We also show
that the relationship between surface free energy (F) and volume
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(V) of large bubbles is approximately linear, which explains the
previously counterintuitive observation that such bubbles are
thermodynamically stable despite having large surface areas. Our
work provides a step toward understanding the capillary state,
stability, and evolution of dispersed immiscible fluids in porous
media.

Conceptual Model
Consider a static bubble inside a two-dimensional (2D) porous
medium consisting of a rectangular array of identical circular
grains (Fig. 1C). The bubble is assumed to be perfectly nonwetting
(i.e., contact angle is θ  =   0). The impact of noncircular grain
shapes and nonzero contact angles will be discussed later. We call
the void space enclosed between four adjacent grains a pore and
the narrow constriction that connects two neighboring pores a
throat. The bubble can reside either within one pore or multiple
pores. The number of pores occupied by the bubble is referred to
as its pore occupancy, n. When n > 1, the bubble may have
multiple branches that meander and occupy pores in different
directions. Moreover, the branches can self-intersect, leaving iso-
lated islands of the wetting phase stranded in the middle (Fig. 1F).
To quantify the topology of the bubble, we use the Euler char-
acteristic, χ (30, 41). The Euler characteristic is defined as χ = β0 −
β1 + β2, where βi are called Betti numbers (26, 28). β0 denotes the
number of disconnected objects, β1 the number of redundant

loops, and β2 the number of cavities in the object. Because we only
analyze one bubble at a time in this work, β0 = 1, and because we
focus on 2D, β2 = 0. The only Betti number of relevance to us is
therefore β1, which is proportional to the number of self-
intersections of the bubble’s branches (i.e., each intersection cre-
ates a new hole). In SI Appendix, SI.3.2, we provide a detailed
analysis that shows χ and n are constrained by the following
interval: 2

̅̅̅
n

√ − n  ≤   χ   ≤   1.
In a 2D porous medium, three functionals are needed to be

specified in order to constrain the thermodynamic state of a
bubble (28, 35). Recent studies (29) show the hysteresis of im-
miscible two-fluid systems to be an artifact of omitting one of
these functionals. Here, we choose V, n, and χ as the three pa-
rameters to describe equilibrium states of a bubble, which are re-
lated (as we shall see) to the aforementionedMinkowski functionals.
Geometric parameters relevant to our study are annotated in

Fig. 1C. We denote the radius of the grains by R1, the half-
distance between the centers of two adjacent grains by R0 and
the half-width of the throats by H. The volume (i.e., area in a 2D
system) of a pore is denoted by Vpore and its area (i.e., or pe-
rimeter in 2D) by Apore. We assume a free surface is constrained
by two neighboring solid grains for simplicity.
We assume that the bubble is in static equilibrium and that no

external fields are imposed. The 2D bubble’s free surface (not
touching the grain surfaces) has therefore a uniform interfacial
curvature denoted by κ = 1/r, where r is the radius of curvature.
Since snap-off events can’t happen in our 2D (42, 43), the bubble
is assumed to remain as one connected piece as it evolves in size,
which simplifies our analysis. To analyze and determine the
thermodynamic state of the bubble, we divide it into four distinct
element types as shown by Fig. 1F. Calculations related to each
element type are provided in Methods.
We next describe the capillary pressure (Pc) and surface (or

Helmholtz) free energy (F) of the bubble for all metastable
states it can assume. The mathematical details for calculating Pc

and F are provided in Methods. Here, we simplify the discussion
by introducing the following terminology that correspond to two
important bubble states:

• The full state refers to when the bubble attains the maximum
volume it can sustain at a given pore occupancy n and Euler
characteristic χ (Fig. 1D). The capillary pressure associated
with the full state is the capillary entry pressure of the throats,
Pc, throat.

• The critical state refers to when the bubble attains the mini-
mum capillary pressure it can sustain at a given n and χ
(Fig. 1E). The capillary pressure associated with the critical
state is denoted by Pc, min, which corresponds to the capillary
pressure of the maximum inscribed sphere of a pore.

In the following, we repeatedly refer to the static bubble as
“trapped” even though its size may grow or shrink due to rip-
ening or other mass transfer processes. The term “trapped” here
means “static” and “in capillary equilibrium.” We shall use the
two terms interchangeably.

Results and Discussion
In this section, we first analyze the equilibrium states of a trap-
ped bubble through a series of demonstrative examples. We then
focus on the bubble’s surface free energy and show how it de-
pends on the bubble’s volume and morphology. Implications for
the stability of dispersed bubble populations are highlighted. We
finally generalize our discussion by considering different grain
shapes, pore-throat aspect ratios, and contact angles. In all
subsequent figures, R0=H = 6, which is representative of previ-
ous micromodel experiments (33).

Fig. 1. (A) Spherical bubbles inside a bulk fluid. (B) Micromodel observa-
tions show that bubbles are nonspherical in porous media and may occupy
multiple pores. This image is from SI Appendix, Movie S1. (C) A 2D porous
medium comprised of an ordered array of identical circular grains. A bubble
occupying multiple pores including a zoom-in to a portion of it. (D) Illus-
tration of the full state. (E) Illustration of the critical state. (F) Decomposition
of a bubble into four distinct parts: minor arc menisci shown by dark blue
cap-shaped regions, throats shown by light blue diamond-shaped regions,
inner bulk bodies shown by red star-shaped regions, and major arc menisci
shown by dark green cap-shaped regions.
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Bubble Multistability. In SI Appendix, SI.1, we derive a closed-
form equation for Pc (and F) as a function of V, n, and χ. The
model shows that for a bubble of fixed V, multiple metastable
states corresponding to different (n, χ) pairs exist. Since n and χ
are integers, the Pc equation depicted by Fig. 2A is a piecewise
continuous function that consists of many disconnected seg-
ments. Each segment corresponds to a different (n, χ) pair, for
which Pc = ∂F=∂V holds. The discontinuous and highly oscilla-
tory dependence of Pc on V, n, and χ highlights the need for a
different approach to describing the capillary equilibrium of
trapped bubbles than the one provided by existing Darcy-scale
theories of two-phase flow, which treat nonwetting fluids as
continuously connected phases.
For n = 1, it is easy to verify that χ = 1. This corresponds to the

first segment of Pc-V in Fig. 2A, which decreases from infinity at
very small V to a minimum Pc, min, followed by an increase to-
ward Pc, throat. For n > 1, all Pc-V segments are bounded within
the interval [Pc, min, Pc, throat] regardless of n or χ. The result is
consistent with previous laboratory experiments in homogeneous

bead packs (25). There, the authors found that the Pc of trapped
bubbles fall within a narrow interval, where the correlation to V
is weak except at very small V.
Fig. 2B shows the Pc-V segments associated with χ = 1 but

different values of n. Fig. 2C shows the Pc-V segments associated
with n = 24 and all possible values of χ. Here, Pc changes more
rapidly with V for smaller values of χ (i.e., corresponding to more
self-intersections). We also note that the number of metastable
states increases with V, as shown by Fig. 2 A and B.

Surface Free Energy and Bubble Population Stability. Here, we an-
alyze the thermodynamic stability of a population of trapped
bubbles by considering their surface free energy (F) under iso-
thermal conditions and no external fields (9). Much like Pc, F is
also a function of V, n, and χ in 2D porous media. We choose the
reference energy as that of a fully saturated wetting phase without
any bubbles, to which we assign the value zero.
The stability of a population of isolated bubbles is governed by

the specific relation between F and V. Assuming F ∝Vm holds
for each bubble, let us define the following ratio:

Fconnnected

Fisolated
  =  

(∑ Vi)m(∑ Vm
i )  

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

<1,       if  m<1

= 1,       if  m = 1

>1,       if  m>1

, [1]

where Vi is the volume of each isolated bubble. Fisolated denotes
the collective free energy of all the isolated bubbles, whereas
Fconnected denotes the free energy of a hypothetical bubble that
has a volume equal to the sum of the volumes of all the isolated
bubbles. We see that when the exponent m <1, it is energetically
favorable for the bubbles to coalesce into one because the free
energy is then lower. This is the case with spherical bubbles in
the absence of confinement, where m = 1−1/d such that d is the
problem dimension. Such a sublinear F-V scaling is indeed the
driving force behind classical Ostwald ripening in bulk fluids that
coarsens the bubble population (44).
However, the validity of the above argument for a bubble

confined inside a porous medium was heretofore unknown. To
address this gap, we examine the dependence of F upon V, n, and
χ. Notice first that F = γA = γΓV , where A is the total area of the
bubble and Γ = A/V is its specific surface area. In SI Appendix, SI.
1.8, we derive closed-form expressions for F and Γ as functions of
V, n, and χ. In Fig. 2D, we plot Γd = R0A/V (dimensionless Γ)
versus V/Vpore (dimensionless volume) for all possible values of n.
Only graphs corresponding to the maximum (black) and mini-
mum (red) values of χ, at each V and n, are shown. The graphs
correspond to the black and red lines in Fig. 2C. We see that for
very small V, Γd is identical to that of an unconfined spherical
bubble (blue line). But as V increases further, Γd starts to fluc-
tuate within a bounded interval. This interval is analytically de-
rived and given below:

Γd ∈   2π · [ 1
4R0=R1 − πR1=R0

,  
1

4 + π − 2πR1=R0
] . [2]

The upper bound of this interval corresponds to the full state of a
bubble at maximal χ =1, whereas the lower bound corresponds to
a state with dΓ/dV = 0 (not the same as critical state) at minimal
χ = 2

̅̅̅
n

√ − n. The interval shrinks for smaller values of porosity
(φ = 1 − πR2

1=4R
2
0).

In geologic porous media, R0/R1 < 2 (corresponding to φ<0.8)
typically holds (45–47). As a result, the interval in Eq. 2 for Γd is
2π · [0.16,     0.25]. This implies a nearly constant specific surface
area at large bubble volumes, which is in agreement with previ-
ous experimental observations in homogenous rock samples
(Fig. 14 in ref. 39 and Fig. 6 in ref. 48). Since Γ = A/V is almost

Fig. 2. Relationship between Pc, V, A, n, and χ for R0=H = 6 in an ordered
array of circular grains. (A) A schematic of the relation Pc = f(V, n, χ). Each
segment corresponds to a different (n, χ) pair, stretching along the Pc-V
plane. Larger V entails larger n and thus a higher possibility of self-
intersection leading to more negative χ. (B) A projection of Pc = f(V, n,
χ = 1) on the Pc-V plane and V axis is in log scale. The Inset is a zoom-in at
large V. The solid black curve corresponds to n = 24, and the solid gray curves
correspond to other values of n. (C) A projection of Pc = f(V, n = 24, χ) on the
Pc-V plane. More negative χ corresponds to steeper Pc-V curve segments. In
C, D, and E, the solid black curve indicates the maximum χ = 1 and the solid
red curve the minimum χ = {2 ffiffiffi

n
√

  − n}. (D) Dimensionless specific interfacial
area (Γd) versus dimensionless bubble volume. The solid blue curve corre-
sponds to a spherical bubble in open space. The Inset is a zoom-in at large V.
(E) Relation between dimensionless total surface area and dimensionless
bubble volume. At large V, the area A is proportional to V, while at small V,
A is proportional to V1−1/d. d is the problem dimension (=2 here). The dotted
blue lines correspond to the slope 1−1/d and 1.
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constant, the relation between A = ΓV and V (for n > 1) must be
approximately linear as shown by Fig. 2E. Therefore,m ∼1 in Eq.
1, also in agreement with published data (2, 49–51). Notice that n
and χ play a relatively minor role in the calculated value of Γ and
thus F. This is similar to the findings of ref. 29, where some of the
geometric state variables of two-fluid systems can be dependent
on one another provided a minor error can be tolerated.
The linearity of F-V implies that the coalescence of confined

bubbles is energetically less favorable (m ∼ 1) than free bubbles
in a bulk fluid (m < 1). Coalescence, therefore, does not nec-
essarily reduce F except at vanishingly small and spherical bubble
volumes (F ∝V 1−1=d). This explains why trapped bubble pop-
ulations are frequently found within geologic porous media. De-
spite their large Γ, the bubbles have no affinity to merge and can
remain stable over geologic time scales. Now the kinetics of bubble
coarsening, or the time needed to reach equilibrium, is a separate
but important issue that the authors we will explore in the future.

Capillary Hysteresis during Bubble Growth–Shrinkage. Bubble growth
and shrinkage often accompany physical and chemical processes
such as phase change, degas/dissolution, gas-generating/consum-
ing chemical/biochemical reactions, and volumetric expansion due
to pressure and temperature changes. Here, we track the changes
in bubble morphology, Pc, and F during a growth–shrinkage cycle
(Fig. 3A). We show that the process is hysteretic because of the
multistability of trapped bubbles in porous media.
Theoretical tools in mathematical topology, such as Minkowski

functionals, provide an elegant framework with which to analyze
and understand hysteresis of general immiscible multiphase fluid
systems (35). Here, we use conceptually simpler tools to examine
hysteresis during growth–shrinkage cycles so as to appeal to the
physical intuition of the process. For simplicity, we take χ = 1,
although a similar analysis holds for other values of χ.
Consider a bubble that grows from an initial volume V = 0.

With reference to the blue arrows in Fig. 3A, the following stages
govern growth:

• Free growth (FG) is the period when the bubble is too small to
be constricted by the pore geometry. Pc gradually decreases
with V in a manner identical to a spherical bubble free from
any solid constraints.

• Constricted growth (CG) starts when the bubble has grown
sufficiently large to have touched the four confining grains, as
the solid blue bubble in Fig. 1E illustrates. Further growth in V
leads to the distortion of the bubble surface to conform to the
pore geometry. In CG, Pc increases gradually until the full
state is reached, where Pc = Pc,throat.

• Breakthrough event (BT) occurs right after the bubble rea-
ches the full state. Any further increase in V causes the pen-
etration of one of the end-point menisci through a throat. The
entire configuration of the bubble becomes unstable, and a
sudden redistribution of mass ensues. BT is manifested by a
sudden jump in Pc -V from one curve segment to the next.
During a BT, Pc drops from Pc, throat to a lower value, and n
increases by one (Fig. 1E).

• Further increase in V leads to a repetition of CG and BT
stages. As a result, the Pc-V appears to fluctuate up and down.

We next track a bubble that shrinks from an initially large V
and n. With reference to the green and red arrows in Fig. 3A, the
following stages govern shrinkage:

• Constricted shrinkage (CS) is the period when the bubble
shrinks without detaching from any of the surrounding grains,
as the solid blue bubble in Fig. 1F illustrates. If the bubble is
initially at the full state, Pc gradually decreases from Pc, throat
with all the menisci retracting simultaneously and maintaining
a uniform curvature.

• Flinch event (FC) occurs right after the bubble reaches the
critical state. Any further decrease in V leads to an unstable
configuration that cannot be sustained by the current n. Hence,
the bubble retracts inward to rearrange its shape. The result of
FC is a sudden surge in Pc and a decrease in n by one (Fig. 1F).

• Further decrease in V leads to a repetition of CS and FC
stages. As a result, the Pc-V relation appears to fluctuate up
and down while bounded below by Pc, min.

• Free shrinkage (FS) is the period when the bubble has reduced
sufficiently in size to occupy a single pore without touching any
of the surrounding grains. The Pc-V relation overlaps with that
of free growth (FG).

Fig. 3B shows that the above growth–shrinkage cycle exhibits
by a sawtooth Pc-V path. The growth route traces the maximum
possible Pc at any given V, while the shrinkage path the minimum
possible Pc at any given V. The two paths, therefore, are com-
pletely different and show significant hysteresis. The F-V paths
corresponding to the above growth–shrinkage cycle are also
shown in Fig. 3C, which similarly exhibit hysteresis.
The FG, CG, CS, and FS periods are all reversible. The only

sources of irreversibility, and thus hysteresis, are BT and FC
events that dissipate energy by rapid reconfiguration. The two
events are very similar to the classical pore-scale irreversible
processes that govern fluid–fluid displacements in porous media:
Haines jumps (rheons) and Melrose events (9, 52, 53). BT and
FC events lead to the adjustment of the bubble interfaces in
every occupied pore. For example, a BT results in not only the
interface advancing in the newly invaded pore but also simulta-
neous interface recoiling in all previously occupied pores as
compensation to keep bubble volume conservative. SI Appendix,
Movie S1 visualizes BT events in a micromodel experiment where
a bubble grows due to slow depressurization. We note that recent
works in mathematical topology provide a promising means of
characterizing the observed hysteresis herein with a unique state
function (see Discussions under the “ink bottle problem” therein)
(27). This pore-scale picture of bubble capillary hysteresis is aligned

Fig. 3. (A) A growth and shrinkage loop of a bubble. Blue arrows show a
bubble growing from small V with n = 1, while red arrows show a bubble
shrinking from large V. (B and C) The nonmonotonic and discontinuous Pc-V
and F-V paths of growth and shrinkage. Blue corresponds to growth and red
to shrinkage. R0=H = 6 and the domain is a circular disk pack.
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with classical pictures for fluid–fluid displacement hysteresis at
pore scale (9, 24) and mesoscale (54).
As shown by Fig. 3B, the oscillations in Pc attenuate as V in-

creases and disappear altogether at the limit V →∞. At large V,
the growth path asymptotes to Pc, throat and the shrinkage path to
Pc, min. More importantly, discontinuities in both paths gradually
disappear, and the Pc-V curves become continuous. Since an in-
finitely large bubble is essentially a continuous phase, we see in-
dications that both Pc-V paths seem to approximate drainage/
imbibition Pc-S curves (where S is saturation) used in classical
Darcy-scale theories of fluid displacement. An exact character-
ization of these limits, however, requires additional tools outside
the scope of this paper. Recent advances in mathematical topol-
ogy (29) provide a promising avenue.

Impacts of Geometry and Wettability. To determine the generality
of the results discussed thus far, we examine the qualitative im-
pacts of grain shape, throat-to-grain ratio, and contact angle
(<π/2) on the equilibrium states of a trapped bubble.
In SI Appendix, SI.4, we show that none of the geometric

factors or wettability qualitatively alter our previous conclusions
about the multistability of bubbles, linear scaling between free
energy and volume, and hysteresis during growth–shrinkage cycles,
at least for the parameter ranges considered. They do, however,
have an important quantitative impact on, for example, the am-
plitude and wavelength of Pc-V and F-V oscillations. More spe-
cifically, larger throat-to-grain ratios result in weaker fluctuations
of Pc and F; different grain shapes change each Pc-V segment
quantitatively; and nonzero contact angles sometimes lead to
negative Pc, min.

Implications and Limitations. Our conceptual model is distinct
from classical capillary pressure models at the Darcy scale. The
latter assume that each phase is hydrodynamically connected
throughout the sample (13, 19) and that fluid–fluid interfaces are
always at capillary equilibrium. However, bubbles are discon-
nected entities with possibly different thermodynamic states.
Our conceptual model is admittedly limited by several as-

sumptions. These include the following: 1) the roles of hetero-
geneity and polydispersity in pore sizes are neglected that will
likely have significant impact on bubble growth, shrinkage, and
hysteresis (54, 55); 2) All external fields such as gravity, back-
ground flow, and concentration gradients are neglected. The last
item can induce Marangoni effects at the bubble surface driving
the system away from the metastable states discussed herein and
toward new ones (56); 3) The model does not apply to very tight
packings of bubbles, like foams, as that requires keeping track
of the separating lamella that delineate the boundary of each
bubble; and 4) Perhaps most importantly, our model is 2D. In
three-dimensional (3D), interfaces consist of two principle cur-
vatures, with possibly opposite signs (i.e., be saddle points) (57)
that may lead to new metastable states. The reason for this as-
sumption was that closed-form expressions seemed possible, at
least to us, only in 2D but immensely difficult in 3D. While no
conclusive claims can yet be made about capillary equilibria of
3D bubbles, we suspect the qualitative observations made herein
remain intact. A quantitatively rigorous analysis in 3D is possible
with computational techniques such as level set (58, 59) and
lattice Boltzmann (60–62) methods, which pose an obvious next
step for future analysis.

Conclusion
We developed a 2D conceptual model that describes the equi-
librium capillary pressure (Pc) and surface free energy (F) of a
static bubble trapped inside a porous medium. Closed-form equa-
tions are derived for both quantities as functions of bubble volume
V, pore occupancy n, and Euler characteristic χ. The conceptual

model revealed that bubbles have fundamentally different capillary
properties than those in a bulk fluid.
For a 2D ordered disk pack, a typical Pc-V curve consists of

many piecewise continuous segments, each of which corre-
sponding to a different (n, χ) pair. For n > 1, all segments fall
within the interval [Pc, min, Pc, throat], which itself depends on the
pore geometry. The free energy (or specific surface area) of the
bubble falls, surprisingly, within a similar but narrower interval.
The implication is an approximately linear relationship between
F and V. The linearity means that the merger of isolated bubbles
is not necessarily favorable energetically, which explains the ther-
modynamic stability of large ganglia observed in a geologic porous
media. This model explains the observations from many previous
experimental observations (25–28, 33, 39, 48)
We also compute Pc and F during a growth–shrinkage cycle of

a trapped bubble and find that both quantities are highly oscillatory
and discontinuous functions of V. Moreover, the growth and
shrinkage paths do not overlap. The hysteresis is attributed to
energy dissipations during sudden and thus irreversible break-
through and flinch events following changes in pore occupancy.
The oscillations in both Pc and F disappear as V approaches in-
finity, indicating some sort of “convergence” toward a macroscopic
state.
Though our model is simple, we believe that it serves as a

useful entry point toward predictive macroscopic theories of bub-
ble mobilization, trapping, and ripening in porous media. Such
theories are needed to answer important questions related to hy-
drocarbon migration, gas-hydrate formation, CO2 sequestration,
and fuel-cell design.

Methods
Correlate Pc to V, n, and χ. We divide the bubble into four distinct element
types as shown in Fig. 1F: (a) minor arc menisci of volume Vminor, (b) throats
of volume Vthroat, (c) inner regions of the pore-body of volume Vbody, and (d)
major arc menisci of volume Vmajor. The Vminor, Vthroat, Vbody, and Vmajor are
all functions of the free surface curvature radius, r, for a given matrix geom-
etry and wettability. The total volume of the bubble can thus be written as

V = n1 ·Vminor (r)  +   n2 ·Vthroat(r)    +   n3 ·Vbody (r)    +   n4 ·Vmajor (r) , [3]

where ni denotes the total number of each element in the bubble. To obtain
ni, we solve the following system of equations, formulated by imposing a set
of morphological constraints:

Fig. 4. An example of a bubble with an unstable morphology. The solid red
line is the bubble at equilibrium before perturbation, while the black dashed
line is the bubble after perturbation. Th perturbation amplifies while V
remains unchanged.
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⎧⎨⎩
4n3 = n1 + 2n2 − n4

n3 + n4 = n
n3 + n4 − n2 = χ

. [4]

Expressions for ni, Vi, and Ai are derived in SI Appendix, SI.1. The first row of
Eq. 4 can be interpreted as an accounting of all the pores’ open faces oc-
cupied by the bubble. The second row of Eq. 4 defines the pore occupancy,
n. The third row defines the Euler characteristic, χ (30, 41). We note that, as
long as 0≤n4 ≤min{n, 2(n + χ)=3}, there could be multiple solutions to Eq. 4.
While all solutions ensure the bubble is at equilibrium (i.e., all interfaces
share the same curvature), they do not necessarily represent metastable
states. At a metastable state, the morphology of a bubble should sponta-
neously recover from an infinitely small perturbation of the bubble’s posi-
tion. By contrast, a bubble that is not at a metastable state will amplify the
tinniest of perturbations until the bubble finds a metastable state. See Fig. 4,
for example. After a small perturbation, the solid red bubble will change to
the dashed black bubble and become unstable. We therefore need more
constraints to exclude unstable configurations.

Details of the analysis of metastable bubble morphology are given in SI
Appendix, SI.2. The conclusion is that n4 can only be 0 or 1. Specifically, when
n4 = 0, the bubble is always stable and ∂V=∂r < 0 holds, but when n4 = 1, the
bubble is stable only when ∂V=∂r > 0. This criterion is derived from general
physical principles and is valid regardless of grain shape, contact angle, and
dimension. In short, the constraint to ensure metastability is as follows:

n4 = 0  ∪    {1  ∩    ∂V=∂r>0} . [5]

In (SI Appendix, SI.4.2), we derive explicit expressions for Vminor(r), Vthroat(r),
Vbody(r), and Vmajor(r) for different grain shapes and wettability. Combined
with Eqs. 3–5 and the mathematical derivation in SI Appendix, SI.3.1, we are
able to obtain a closed-form equation for r =   f(V ,   n,   χ). Pc is then readily
obtained via Pc = γ/r. Because r is a function of V, n, and χ, so is Pc.

F versus V, n, and χ. For a given n and χ, dF/dV = Pc (9). Since Pc is a function of
V, n, and χ obtained from the previous section, F can also be written as a
function of V, n, and χ. We set the reference free energy as that of a fully
saturated liquid with no bubbles.

To determine F of a static equilibrated bubble, we also look into the four
distinct element types as shown in Fig. 1F and denote the surface area of 1)
minor arc menisci of surface area Aminor, 2) throats of surface area Athroat, 3)
inner regions of the pore-body of surface area Abody, and 4) major arc me-
nisci of surface area Amajor. The Aminor, Athroat, Abody, and Amajor are all
functions of r for a given matrix geometry and wettability. The total surface
area of the bubble can thus be written as the following:

F = n1 · γ1Aminor (r)  +   n2 · γ2Athroat(r)    +   n3 · γ2Abody (r)    +   n4 · γ1Amajor (r) ,
[6]

where γ1 is the interfacial tension at the free surface and γ2 is the interfa-
cial tension at a constrained surface. For a completely nonwetting bub-
ble, γ1 = γ2 = γgl; for a nonzero contact angle (=θ) case, γ1 = γgl, and
γ2 = γgs − γls = γgl cos θ is the difference between solid–gas interfacial tension
and solid–liquid interfacial tension. In SI Appendix, SI.4.2, we derive explicit
expressions for Aminor(r), Athroat(r), Abody(r), and Amajor(r) for different grain
shapes and wettability. We then obtain a functional form of F =   g(V ,   n,   χ).

Data Availability. All study data are included in the article and/or supporting
information.
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