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Abstract 

Capillary or residual trapping is considered one of the safest geologic CO2 storage mechanisms 

due to its hydrodynamic stability. We present a first study of the impact of gravity on Ostwald 

ripening in porous media and show it may render capillary trapping thermodynamically 

unstable. Gravity induces a vertical chemical potential gradient that leads to the upwards 

diffusion of CO2. Thus, bubbles at shallower depths grow at the expense of bubbles in deeper 

strata, leading to the formation of an overriding gas cap. We first develop a pore-scale model 

for two bubbles trapped within adjacent pores, and then upscale it to obtain a one-dimensional 

continuum model. We use the latter to predict the macroscopic evolution of a trapped bubble 

population. Factors controlling the ripening process are isolated to assist in selecting CO2 

storage sites. Gravity-induced ripening may also play a role in geologic fluid emplacement and 

migration over millions of years. 

 

 

Plain Language Summary 

Capillary trapping is a mechanism that ensures that the CO2 injected during geologic carbon 

sequestration remains stable and safe underground. However, the stability of sequestered CO2 

can be disrupted by another competing mechanism called Ostwald ripening. In Ostwald 

ripening, CO2 is transported from smaller bubbles towards larger bubbles. This is undesirable 

since large bubbles may become remobilized and potentially leak towards the surface. In this 

study, we show that gravity plays a crucial role in modifying the behavior of Ostwald ripening. 

Specifically, gravity causes an upwards migration of CO2 towards shallower depths, which 

over long periods of time can lead to the formation of a mobile gas cap at the risk of leakage. 

The models we develop herein reveal that it is possible to decelerate or even prevent CO2 

migration if we carefully select sequestration sites that have the right kind of geology and rock 

type.  
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1. Introduction 

The long-term stability of trapped CO2 is paramount in geological CO2 sequestration. 

Within the first ~104 years after injection, the dominant CO2 trapping mechanisms include: 

structural and stratigraphic trapping (as mobile gas caps), solubility trapping (dissolved into 

resident brine), and residual or capillary trapping (as bubbles in pores) (Benson et al. 2012, 

Benson and Cole 2008, Benson and Orr 2008). Solubility trapping is limited by the dissolution 

capacity of the in-situ brine. Structural and stratigraphic trapping is less favorable over long 

times, as the mobile gas cap could leak through pre-existing faults and fractures (Guo et al. 

2014). By comparison, residual trapping offers higher storage capacity (bubbles need not 

dissolve) and is more stable due to strong capillary forces at the pore scale (Hagoort 1988, 

Huppert and Neufeld 2014, Pentland et al. 2011). If the above physical trapping mechanisms 

remain effective over very long time scales (> 104 years), mineral trapping would dominate 

and permanently transform CO2 into carbonate minerals  (Xu, Apps and Pruess 2004). 

Maximizing capillary trapping has therefore been the subject of intensive study over 

the past decade (Gasda, Nordbotten and Celia 2011, Gasda, Nordbotten and Celia 2009, Hesse, 

Orr and Tchelepi 2008, Ide, Jessen and Orr Jr 2007, Juanes et al. 2006). Some predictions have 

suggested that more than 95% of the undissolved CO2 can be safely sequestrated through 

capillary trapping 10,000 years after injection (Gasda et al. 2009). By optimizing injection 

operations, residual trapping can be maximized while simultaneously preventing the formation 

of a gas cap (Ide et al. 2007). For these reasons Huppert et al. (Huppert and Neufeld 2014) have 

claimed that “residual trapping of fluid within porous rock is one of the most effective methods 

for stably trapping CO2 after injection”. 

While it is known that capillary trapping is hydrodynamically stable, its thermodynamic 

stability has been the subject of investigation only recently (Xu, Bonnecaze and Balhoff 2017, 

de Chalendar, Garing and Benson 2018, Garing et al. 2017). In the absence of geometric 
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confinement, Ostwald ripening (Fu, Cueto-Felgueroso and Juanes 2016, Voorhees 1985, 

Voorhees 1992) is the mechanism that causes the diffusion of CO2 from small bubbles towards 

large bubbles. The driving force is the capillary pressure difference between the bubbles [Fig. 

1(a)-(c)]. At equilibrium, Ostwald ripening leads to the formation of a single large bubble that 

may become hydrodynamically unstable (Fu et al. 2016). In the presence of confinement, 

however, the behavior of Ostwald ripening is modulated such that stable bubble configurations, 

with uniform capillary pressure, can exist. This observation has been confirmed by recent pore-

scale (Xu et al. 2017) and core-scale (Garing et al. 2017) experiments, and pore-scale modeling 

(de Chalendar et al. 2018). Confinement affects Ostwald ripening because it imposes a 

constraint between the volume of a bubble (Vbubble) and its capillary pressure (Pc). The specific 

relationship between Vbubble and Pc depends on pore geometry.  Fig. 1(f) shows such a 

relationship for the pore in Fig. 1(d)-(e). Note that Pc is a non-monotonic function of Vbubble, 

contrary to the case without confinement. Pc incurs a minimum, Pc,min, at bubble volume Vcrit. 

For Vbubble < Vcrit, the bubble is sufficiently small and does not contact the pore walls. It is 

spherical in shape and behaves identical to an unconfined bubble. For Vbubble > Vcrit, the bubble 

cannot form a stable sphere inside the pore and is therefore squeezed into the narrow crevices 

and throats adjacent to the pore. The result is that Pc increases with Vbubble. Similar non-

monotonic Pc functions have been used to model fluid-fluid displacements (Thompson 2002).   

 

While recent studies (de Chalendar et al. 2018, Garing et al. 2017, Xu et al. 2017) have 

provided valuable insight into the effect of Ostwald ripening on capillary trapping, the 

influence of gravity has thus far been ignored. Neglecting gravity is indeed a reasonable 

assumption when studying hydrodynamic stability of trapped bubble because capillary forces 

at the pore scale are much stronger than buoyancy forces in the subsurface (Perkins and 

Johnston 1963, Whitaker 1967). However, during Ostwald ripening, bubbles interact with each 
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other through molecular diffusion without the need to physically mobilize. Since gravity can 

alter the magnitude and direction of chemical potential gradients, its contribution can no longer 

be neglected over long time periods. In the following, we show that gravity can cause a vertical 

redistribution of trapped bubbles in the reservoir leading to the formation of an overlying gas 

cap, which may pose subsequent risks of CO2 leakage towards the surface. 

2. Gravity-Induced Ripening at the Pore Scale 

 

2.1. Model Description 

In this section, we consider gravity-induced Ostwald ripening at the pore scale and 

develop a simplified model that captures the salient aspects of the physics. Consider the 

idealized two-bubble system depicted in Fig. 2(a). Two identical non-wetting bubbles of initial 

volume V0 are trapped within two identical pores separated by a vertical distance Lt. The throat 

connecting them has a cross-sectional area At and is filled with brine, which is the wetting phase 

w. The CO2 bubbles comprise the non-wetting phase b. The two phases are slightly miscible 

and can therefore form a binary mixture. We assume that such a mixture forms only in the brine 

phase and that the CO2 bubbles remain pure. For simplicity, we also use w and b to denote the 

water and CO2 components, respectively. We further assume that the binary mixture is ideal 

and that the fluids are incompressible and under isothermal conditions. We aim to develop a 

one-dimensional model for this two-bubble system (full details in Supplementary Materials). 

The Pc - Vbubble relation for a confined bubble is strongly dependent of the specific pore 

and throat shapes. For simplicity, but without loss of generality, we consider a linearized Pc - 

Vbubble relation given by P
c
= g (m

1
V
bubble

-1/3 +m
2
V
bubble

) , where γ is surface tension, m1= 4(π/6)1/3, 

m2 ∝ R0
-4, and R0 is the pore half-length as marked in Fig. 1(d). The first term represents the 

contribution to Pc when Vbubble<Vcrit and the bubble is spherical in shape. The second term 
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captures the contribution when Vbubble>Vcrit and the bubble is deformed by the pore walls; 

Pc ≈ γm2Vbubble in this regime. Fig. 1(f) shows a graph of Pc versus Vbubble for m2 = 2R0
-4, which 

is the value used hereafter.  

 Denote the density and molar volume of the w and b phases by ρw, Vmw, ρb, and Vmb. 

Since CO2 is buoyant in brine in most common cases, we only consider Δρ = ρw - ρb > 0. We 

initialize the bubble volumes such that V0 > Vcrit. Specifically, we set V0 = 1.2R0
3. We do not 

consider bubbles with V0 < Vcrit, because they are thermodynamically unstable (similar to 

unconfined bubble ripening) and thus uncommon after long time scales. We denote the pressure 

of the brine phase w with P and assume that it follows a steady-state hydrostatic profile.  

We take the positive z-axis to coincide with the upward direction and place z = 0 at the 

throat entrance connected to the bottom bubble. We choose a reference pressure P0 as the 

wetting phase pressure at z = 0. We denote the molar fraction of b dissolved in w with xb. 

Taking the contribution of gravity into account, we can write the chemical potential of b 

dissolved in w at position z as m
b

w = m
b

0 + RT ln
x
b

x
b0

-V
mb

∆rgz  (Muskat 1930, Sage and Lacey 

1939), where m
b

0  is the reference chemical potential of pure b at P0 and xb0 is the reference 

molar fraction of b dissolved in w at P0. Similarly, the chemical potential of pure b within each 

bubble can be expressed as m
b
 = m

b

0 +V
mb

(P
c
- ∆rgz) , where Pc is the capillary pressure at the 

bubble interface. For simplicity, we assume that xb at z = 0 and z = Lt is equal to the equilibrium 

concentration at the bubble surface at all times. We can therefore calculate it by equating m
b

w  

and m
b

 to obtain x
b

|
z=0,L

t

= x
b0
exp(

V
mb
P
c

RT
) . Finally, we initialize the dissolved CO2 

concentration in the throat by uniformly setting it to x
b

|
t=0

= x
b0
exp(

V
mb
P
c0

RT
) , where Pc0 is the 

initial bubble capillary pressure. 
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Having described the problem setup, we can now write the governing equations for the 

two-bubble system. The first equation is a species balance for the dissolved component b along 

the throat described by equation (1). Note that equation (1) is obtained by combining mass 

conservation with Fick’s law for molecular diffusion. We have used the generalized Fick’s law, 

which describes the dependence of molar mass flux Jb on chemical potential gradient, i.e., 

J
b

= -
Dc

b

RT

∂m
b

w

∂z
. D is the diffusion coefficient and cb = xb/Vmw. We can simplify the non-linear 

equation (1) by linearizing it around the reference pressure P0. Specifically, we take P0 to be 

orders of magnitude larger than both Pc0 and ΔρgLt. Under these conditions, quite typical in 

geologic CO2 storage, xb|t=0 becomes orders of magnitude larger than any variations in xb. We 

can therefore make the approximation outlined on the right-hand-side (RHS) of equation (1). 

 
∂x

b

∂t
=
Dx

b

RT

∂2 m
b

w

∂z2
≈D

∂2 x
b

∂z2
  (1) 

The boundary conditions of equation (1) consist of setting xb to the equilibrium xb | z=0, 

Lt  concentration derived above. To close the system, we need equations describing the 

evolution of the bubble volumes over time. This is achieved by simply imposing mass 

conservation at the interface between the bubble surface and the throat entrances. The result is 

equation (2) and (3). 

 
dV

bubble

dt
|
bottom

=
A
t
DV

mb

RTV
mw

x
b

∂m
b

w

∂z
|
z=0

 (2) 

 
dV

bubble

dt
|
top

= -
A
t
DV

mb

RTV
mw

x
b

∂m
b

w

∂z
|
z=L

t

 (3) 

2.2. Results and Discussion 

We solve equation (1)-(3) numerically with input parameters corresponding to typical 

CO2-water systems at ~1km depth (see Table S1) (Chiquet et al. 2007, Duan and Sun 2003, Lu 
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et al. 2013). Figs. 2(b-c) show the evolution of the two bubble volumes for different Lt and R0 

(see Text S1). In all cases, CO2 is transferred from the bottom bubble to the top bubble. 

However, two different regimes can be identified. In regime I, the bottom bubble shrinks and 

the top bubble grows but they both stop at some finite equilibrium size. In regime II, the bottom 

bubble disappears completely and its mass is entirely transported into the top bubble. The 

occurrence of either regime is governed by the relative importance of capillary versus 

gravitational forces in this two-bubble system. Specifically, regimes I and II correspond to 

dominating capillary and gravitational forces, respectively. Increasing Lt (proportional to 

gravitational potential difference) and R0 (inversely proportional to capillary forces) can drive 

the system from regime I to II. 

In order to better understand the regimes, we proceed to derive scaling relationships for 

each regime and verify them against numerical solutions of equation (1)-(3). We first simplify 

equation (1)-(3) by assuming that the rate of molecular diffusion along the throat is much faster 

than the rate of change in bubble volumes. Diffusion is therefore regarded as a quasi-static 

process limited by changes in bubble volumes. Under these conditions, the time derivative term 

in equation (1) can be neglected, and integration of equation (1) over z thus yields equation (4). 

Note that equation (4) is simplified by approximating 
V
mb
P
c

RT
<<
V
mb
P
c
+ P( )

RT
~ O(1). Note that 

ΔPc is the capillary pressure difference between the two bubbles, which in turn depends on the 

bubble volumes. The latter is governed by equation (5), which we obtain by subtracting 

equation (2) from equation (3). Equation (5) is further simplified on the RHS by linearizing the 

chemical potential gradient (similar to section 2.1) and combining the result with equation (4). 

Note that equation (5) suggests that, aside from Lt, the ripening process directly depends on At, 

D and xb0. 
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¶x
b

¶z
= x

0
exp(

V
mb
P
c

RT
) |
top

-exp(
V
mb
P
c

RT
) |
bottom

æ

èç
ö

ø÷
»
x

0
V
mb

RT
DP

c
     (4) 

d DV
bubble( )
dt

=
A
t
DV

mb

RTV
mw

x
b

¶m
b

w

¶z

æ

è
ç

ö

ø
÷ |
bottom

top ≈ 2A
t
D
V
mb

V
mw

x
0
V
mb
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ö

ø
÷
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c
- DrgL
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L
t

æ

è
ç

ö

ø
÷    (5) 

We now use equation (4) and (5) to derive scaling relations between the time required 

to reach equilibrium, te, and throat length, Lt. We define te as the time at which 99% of the 

cumulative mass transfer between the two bubbles is complete. In regime I, capillarity 

dominates and we can approximate Pc ≈ γm2Vbubble. Subsequent integratation of equation (5) 

yields equation (6). Invoking our definition for te we obtain ΔPc/ΔρgLt = 0.99, which upon 

substituting it into equation (6) yields ln0.01= -2A
t
D
V
mb

V
mw

x
0
V
mb

RT
g m

2

t
e

L
t

. We thus obtain a 

linear te ~ Lt scaling for regime I, which is different from te ~ Lt
2 in classical Fickian diffusion 

(Whitaker 1967). In regime II, since gravity dominates, we can neglect the capillary term in 

equation (5) and integrate to yield equation (7). We thus see that te is independent of Lt in 

regime II. As an aside, notice that te depends on γ only in regime I and on Δρ only in regime II. 

ln 1-
∆P

c

∆rgL
t

æ

è
ç

ö

ø
÷ = -2A

t
D
V
mb

V
mw

x
0
V
mb

RT

g m
2

L
t

t       (6) 

t
e
=V

0
/ A

t
D
V
mb

V
mw

x
0
V
mb

RT
∆rg

æ

è
ç

ö

ø
÷        (7) 

We test the validity of the above scaling relations between te and Lt by plotting 

numerical simulation data in an alternative dimensionless form. Namely, we plot the 

dimensionless equilibrium time t
d

= m
2
A
t
Dt

e
 against the dimensionless throat length 

L
d

=
V
mw

V
mb

RT

x
0
V
mb

g
L
t
 in Fig. 2(d). As expected, all data points in regime I collapse onto a single 

straight line and all the data points in regime II plateau into constant values. The peaks in Fig. 
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2(d) correspond to a regime, in which capillary and gravity forces are comparable in magnitude. 

In this case, Pc ≈ γm2Vbubble is not a good approximation and accurate predictions require 

computation.  

As a sidelight, we note that ripening happens majorly among neighboring pores. 

Therefore Lt is much smaller than 1mm thus evolution of two neighboring identical bubbles 

always fall in regime I in most cases. However, much larger Lt (up to centimeters) may be 

realistic when describing ripening between gas ganglia trapped in neighboring micro-fractures 

or vugs (i.e. with large R0 thus smaller m2), in which case the evolution dynamics may fall into 

regime II. 

 

3. Upscaling from Pore Scale to Continuum Scale  

The above pore-scale analysis demonstrated that gravity-induced ripening causes 

bubbles at the shallower depths to grow at the expense of bubbles at deeper strata. To 

understand the implications of this observation over geologic scales (meters in thickness and 

thousands of years), we develop a simplified one-dimensional continuum model based on the 

pore-scale results of section 2. We recognize that geologic CO2 storage is a multiscale 

multiphysics problem that does not easily lend itself to simplifications. However, reduced-

order models are very valuable in that the allow the effects of a subset of the physics to be 

rapidly analyzed and extrapolated over engineering scales for the purposes of project design 

and operations. Our aim here is to achieve exactly such an understanding of the long-term 

effects of gravity-induced Ostwald ripening.  

For realistic geological systems, Lt is always sufficiently small for the quasi-static 

assumption leading to equation (5) to be valid. Equation (5) is also consistent with a previously 

validated model for bubble ripening (excluding gravity) at the scale of multiple interconnected 
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pores (Xu et al. 2017). We proceed by defining a modified Henry’s constant as Kpx = ∂Pb/∂xb; 

similar to (Xu et al. 2017). We also define the average number of bubbles residing in adjacent 

pores of a trapped bubble as n. Adjacency means that there is a throat connecting the two 

bubbles. We can now impose mass conservation on each bubble via equation (8). 

dV
bubble

dt
= kn

DP
b

L
t

,  where k ≈ 
V
mb

V
mw

A
t
D

K px
          

(8) 

In equation (8), DP
b
 is the average potential difference between a bubble and its neighboring 

bubbles. The total potential of each bubble is P
b

= P
c
- ∆rgz + P

0
. Equation (8) is a 

generalization of a previously reported model (Xu et al. 2017) that accounts for gravity. Notice 

that equation (8) has a discrete form as it applies between individual bubbles. In order to 

transform equation (8) into a differential or continuum form, we can first take its limit as Lt 

→0, and assume that all pores are identical, to obtain equation (9) (details in Supplementary 

materials). 

∂ V
bubble

/V
pore( )

∂t
 =

kn
0

V
proe

L
pore

2

2L
t

æ

è
ç

ö

ø
÷ ×

∂

∂z

n

n
0

¶P
b

¶z

æ

è
ç

ö

ø
÷                  

(9) 

In equation (9), Lpore is the center-to-center distance between two neighboring pores 

and Vpore is the volume of each pore. n0 is the number of neighboring pores (not bubbles) 

adjacent to each pore. Here we introduce an assumption of local capillary equilibrium, i.e., 

bubbles in an REV (representative elementary volume) are in equilibrium, sharing identical 

capillary pressure as well as gravitational potential. That said, although there could be complex 

interactions among multiple neighboring bubbles, the time required to get equilibrium inside 

an REV (< cm) is negligible compared to that of gravity-driven ripening process. Therefore, 
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we ignore the complex dynamics in an REV and always assume local thermodynamic 

equilibrium, similar to most of other large-scale simulations. 

Further, if we denote Vbubble/Vpore as the non-wetting phase saturation S and n/n0 as the 

“pore occupancy” parameter C (i.e., fraction of neighboring pores occupied by bubbles), 

equation (9) is rewritten into  the one-dimensional continuum model given by equation (10). 

Note that we have implicitly assumed uniformity of all dependent and independent variables 

across any given depth z. 

dS

dt
= K

d

dz
C
dP

b

dz

æ

èç
ö

ø÷
, where P

b
= P

c
- ∆rgz + P

0
     (10) 

Both Pc and C are functions of S (detailed in Supplementary Material). The rate constant is 

given by K=n0B0F0, where B
0

=
A
t

V
proe

L
pore

2

2L
t

 depends only on pore shape (not size) and

F
0

=
V
mb

V
mw

D

K px
 depends only of fluid properties.  Without loss of generality, we assume B0 = 1. 

Pc is the local capillary pressure of trapped bubbles, which is different from the conventional 

definition of capillary pressure in typical continuum (or Darcy) models. The latter corresponds 

to a continuous non-wetting phase relevant in fluid-fluid displacement process (Andrew, 

Bijeljic and Blunt 2014). 

 

4. Continuum Scale Simulation Results and Discussion  

4.1. A Demonstration Case 

We solve equation (10) numerically to predict the long-term evolution of gravity-

induced Ostwald ripening after supercritical CO2 injection into a 1 m thick stratum. We set C 

= 1 at the beginning of the simulation. The profile of CO2 saturation versus depth is randomly 
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initialized from a uniform distribution with mean residual saturation Sr = 0.3. We use CO2 and 

water properties corresponding to 10 MPa and 60 °C typical of ~1 km depths (see Table S1) 

(Chiquet et al. 2007, Duan and Sun 2003, Lu et al. 2013). 

Fig. 3(a)-(d) shows that within a geologically short time after injection (~1 year), the 

saturation profile becomes locally uniform. This observation agrees with previous 

experimental studies in the absence of gravity (Garing et al. 2017, Xu et al. 2017). Several 

decades (~60 years) later, the onset of vertical redistribution of CO2 emerges. During this time, 

CO2 is transferred from deeper strata towards shallower depths leaving a bubble-free zone at 

the bottom. When the CO2 saturation at the top of the reservoir reaches a critical value (Smax = 

0.7 in this case study), bubbles coalesce into a continuous mobile gas cap.  Finally, 2000 years 

after injection, the CO2 saturation profile reaches an equilibrium configuration, in which 

capillary trapping dominates only in an interval between the gas cap and the bubble-free zone. 

We refer this interval as the “stable capillary trapping belt” (SCTB). This case study shows that 

even though 100% of the initially trapped CO2 is in the form of isolated bubbles, a mobile gas 

cap is eventually formed at the top of the formation (i.e., S > Smax).  

It is noteworthy that the gas cap forms far earlier than mineral trapping can have any 

significant impact on either the injected CO2 or the rock matrix (Gasda et al. 2011, Krevor et 

al. 2015, Xu et al. 2004) in this case study. While ~ 1 m thick strata are quite typical as 

hydrocarbon reservoirs or shallow water aquifers, they are likely too thin to be considered ideal 

storage sites. In the next section, we develop dimensional analysis on ripening dynamics based 

on equation  (10), and study the scaling of gas cap growth as well as equilibrium time with 

more simulation results. Therefore, we extend our discussion to thicker stratum over longer 

time scales. 

 

4.2. Scaling of Ripening Dynamics and Equilibrium  
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Assuming that capillarity is only locally significant, dimensional analysis of equation 

(10) yields the scaling between time Δt and the corresponding change in gas cap thickness ΔL: 

S
r

Dt
~ K

DP
b

DL2
= K

Drg

DL
               (11) 

Denoting the gas cap thickness by hc, and assuming h >> hc, equation (11) can be 

transformed into equations (12) for estimating the growth of a gas cap:  

h
c

~
DrgK

S
r

t                   (12) 

Note that hc is proportional to t, instead of t1/2, and does not depend on h. Equation (12) 

agrees with the numerical simulations in Fig. 3(e) during the growth stage of the gas cap. If the 

formation is sufficiently thick, a ~ 3 m thick gas cap may form after 10,000 years. Equation 

(11) can also be transformed to estimate the time needed to reach equilibrium teq,:  

t
eq

~
S
r

DrgK
h                 (13) 

With a factor 0.6 multiplying the RHS, equation (13) agrees well with numerically 

simulated teq for h between 1m and 100 m as shown in Fig. 3(f).  We see that it takes ~ 8000 

years for a 5 m thick stratum and ~ 80000 years for a 50 m thick stratum to reach equilibrium. 

For such thick strata, the time scale of gravity-driven ripening is comparable to that of mineral 

trapping, which complicates the accurate prediction of the fate of stored CO2. 

The final shape of the macroscopic saturation profile depends on the competition 

between gravity and capillary forces in the reservoir. In the Supplementary Material (section 

S2.5), we show that the SCTB thickness, hSCTB, can be calculated by solving max[Pc(S)] – 

min[Pc(S)] = ΔρghSCTB. If capillarity dominates, hSCTB/h >> 1 and capillary trapping is globally 

stable (similar to regime I at the pore scale). If gravity dominates, hSCTB/h << 1 and almost all 
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of the trapped CO2 evolves into an overlying gas cap (similar to regime II at the pore scale). 

This is confirmed by Fig. 3(g)-(i).  

Equations (12) and (13) may be applied to devise strategies to decelerate gravity-

induced ripening for reducing the risk of gas-cap formation and leakage.  In practice, they 

involve either decreasing K or Δρ; recall K=n0B0F0 where B
0

=
A
t

V
proe

L
pore

2

2L
t

 and F
0

=
V
mb

V
mw

D

K px
, 

which are very sensitive to the thermodynamic properteis of CO2. Therefore, storage sites with 

low temperature, high pressure, and high salinity are preferred scenarios, which seem 

representative of strata underneath deep seafloors. On the other hand, drilling and injection into 

deep offshore strata is both economically expensive and ecologically risky (Eccles et al. 2009), 

which must be taken into assessment. 

4.3. Limits of the Proposed Models 

The analysis in this paper focused on a single geological stratum. For intervals 

consisting of multiple strata, equation (10) remains valid in each storage layer except in the cap 

rock. One reason for this is that cap rocks consist of very small pores and thus very high 

capillary entrance pressures that injection pressures cannot overcome. This violates 

assumptions (5) and (7) listed in the Supplementary Material (section S.3). Classical single-

phase Fickian diffusion may be more appropriate for describing CO2 migration within cap 

rocks, although the exact physics are debated (Neuzil and Person 2017, Neuzil 2013). A 

detailed study is deferred to the future. 

           Throughout this work, we also neglected the impact of CO2 dissolution on brine density. 

It is known that CO2 dissolution increases brine density, which in turn induces Rayleigh-Taylor 

instabilities and convective dissolution (Thomas, Dehaeck and De Wit 2018, Neufeld et al. 

2010, Loodts et al. 2014). While not captured by our model, we argue that convective 
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dissolution and gravity-induced ripening occur at different stages of the CO2 sequestration 

process. Convective dissolution typically occurs at the underside edges of an overriding CO2 

plume and is driven by density differences within the brine phase. By contrast, gravity-induced 

ripening is driven by density differences between two un-dissolved phases. Our models assume 

that the surrounding brine is already saturated with dissolved CO2, which is representative of 

the region adjacent to the wellbore in the wake of an injected CO2 plume. Incidentally, the 

same region will have undergone an initial drainage (by CO2) followed by a subsequent 

imbibition (by brine) leading to trapped CO2 bubbles and ganglia. The brine in this region is 

likely to have had sufficient time to be saturated by CO2, rendering density differences within 

the brine of secondary importance. Nevertheless, future work must confirm this hypothesis by 

including convection in the modeling framework. 

We note that gravity-induced ripening may also play a crucial role in geologic fluid 

emplacement and migration (e.g., hydrocarbons). The millions of years in time scale match our 

model predictions for thick strata. That said, the model must be generalized to include multi-

component geochemistry and mixed-wettability, if it is to correctly capture hydrocarbon 

migration. 

 

5. Conclusions 

We develop pore-scale and continuum models of gravity-induced Ostwald ripening. 

The models demonstrate that capillary trapping may not be as stable a trapping mechanism as 

previously assumed. We show that gravity can induce the redistribution of otherwise 

hydrodynamically stable bubbles and transport significant quantities of CO2 from deeper strata 

towards shallower depths over geologic time scales. The result may be the formation of a gas 

cap at the top of the reservoir. The time scale of this process is predicted to be less than or 
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comparable to that of mineral trapping. We outline potential strategies for decelerating the 

ripening rate by a careful selection of CO2 storage sites. The above findings, while subject to 

several assumptions, may provide new insights for assessing CO2 storage security. The findings 

herein might also be of relevance to gravity-induced ripening in the context geologic fluid 

emplacement and migration over millions of years (e.g., hydrocarbons). 
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Figure 1. Ostwald ripening in the presence and absence of confinement, without gravity. (a)-

(c) In unconfined space, ripening leads to bubble coarsening. (d)-(e) In confined pores (here 

identically shaped), ripening results in stable bubbles with identical curvature. R0 is the distance 

between the pore center to the throat center. (f) Dimensionless capillary pressure versus 

dimensionless bubble volume for a bubble in the presence (blue) and absence (red) of 

confinement. The dashed line represents Vcrit at Pc,min.   
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Figure 2. Simplified pore-scale model of gravity-induced ripening for a two-bubble system. 

(a) Schematic of the system setup at t = 0.  Lt and R0 are not to scale. Evolution of the 

(normalized) bubble volumes over time at (b) fixed R0 = 50 µm with varying Lt, and at (c) fixed 

Lt = 5 mm with varying R0. Note that there are two equilibrium regimes. Regime I at small Lt 

and R0, and regime II at large Lt and R0. (d) Plot of dimensionless equilibrium time (td) versus 

dimensionless throat length (Ld). Note that we don’t show the results for Lt << 1cm in (b) as 

they all fall into regime I, although those data have been incorporated in (d). 
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Figure 3. Top row: evolution of the vertical CO2 saturation profile in a 1 m thick stratum at 10 

MPa and 60 °C, corresponding to Movie S1. (a) Initially randomly distributed saturation 

profile; (b) one year after injection, capillary forces dominate and the profile becomes locally 

uniform; (c) 60 years later, gravity dominates and the onset of vertical CO2 migration is seen; 

(d) 2000 years later, ripening is complete and the saturation profile consists of three regions: a 

mobile gas cap at the top, a stable capillary trapping zone, and a bubble-free zone at the bottom. 

Bottom row: (e) gas cap thickness, hc, as a function of formation thickness, h, and time; (f) time 

required to reach equilibrium, teq, for different h. Similar thermodynamic and pore-scale 

parameters are used in (a)-(f).  (g)-(i) Equilibrium CO2 saturation profiles with Sr = 0.3 for 

hSCTB/h = 0.01, 0.2, and 10.  

 

 


